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ABSTRACT

Ve d

An analysis was made in order to find the flow rates and position
of liquid levels in tanks when they are drained by gravity. During this
process unsteady flow occurs and a given steady flow cannot be assumed
any more. Samples for one-tank and two-tank configurations are brought
up with and without hydraulic losses in the lines. The results are

differential equations which can be solved numerically by a digital
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LIST OF SYMBOLS

Cross-sectional area of the tank
Cross-sectional area of the tube
Integration constant

Hydraulic diameter

Diameter of the tube

Length of the tube

External force, inertia force
Gravitational constant

Initial height in the tank

Liquid height in the tank at any time
Unit vector for the x axis

Unit vector for the y axis

Unit vector for the z axis
Lateral surface

Mean roughness height

Mass of the fluid

External normal to the surface element
Exponent (constant)

Perimeter

Pressure

Tank pressure

Ambient pressure

Volume flow rate

iv
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Re Reynolds Number

S Surface

t | Time

v Volume

v Velocity

v Velocity vector

w Potential of inertia forces per unit mass
x Coordinate

y Coordinate

z Coordinate

Greek Symbbls

o Constant
B Constant
€ Relative roughness
A Nondimensional friction coefficient
v Kinematic viscosity
T Total pressure
P Density of the mass
T Frictional stress
Subscripts
a Liocation at entrance
b Location at exit
1 Refers to tank 1 and interconnect line
2 Refers to tank 2 and draining line
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INTRODUCTION

In order to get a complete and fundamental understanding of the
unsteady flow out of the tanks, it is best to start with the governing
equation of momentum and continuity and the derivation of these equations,
As shown in the following treatment, these governing equations are
subject to great simplification and it is pointed out that certain terms
in the general equations may be neglected, e.g. when assuming that the
hydrodynamic variables are constant over the cross section, comparing
first order terms with higher order terms which are negligible and can-
celling terms which are much smaller than the main expressions. After
obtaining the equations, the application of them on one- and two-tank

configurations will follow.



DERIVATION OF THE BASIC EQUATIONS OF FLUID FLOW

The law of momentum for a given mass of fluid

m =§§Spdv

is

__dm.?: Fj

= : (1)

where V¥ denotes the velocity vector and ZFi denotes the resultant
external force on the fluid mass which is equal to the change of the

- . . s
momentum vector m - v with respect to time. The momentum vector is

mv = SS‘Sp vav . (2)
\'s

Variation of any mass m during flow may be a reason of changes in the
density p and changes in the volume V which the fluid mass takes in any
moment of time.

The expression for changing the mass due to the variation of

the density is

Sgg.g_g av

and the change of the mass per unit time due to variation of the volume

is

[§ommas .

S




)

where S is the surface enclosing the volume V and v, is the normal
component of the velocity acting on a given point of the surface. The

last term can be changed with the aid of Green's theorem to a volume

integral
SSpvndS=§S‘SV-p7dV , (3)
S v
or with
v - 0 8
-pv——a-—(pvx)+ (pv)+ {p vz) (4)
S‘Sp Vn dS:SgS‘[ (p vx)+ (p vy)+ (p v )] . (5)
S \'

With these expressions the law of momentum is

> dpV S' - _
g&g pn S‘ PV VvV, ds =
: Vv S

(6)

ggg[ atv +-é—£ (pvvx)+“a; (PVVY)-*--a—z(pvvz)JdV:zF‘i )

The resultant external force 2 F consists of the inertia force

S‘é‘gpfdv :

F represents the inertia force per unit mass (actually with the dimensions

of acceleration), and the pressure force

gngdS ,
S



where n is the external normal to the surface element dS, p is the absolute

pressure. The third force comes from the friction

S‘S‘ 7, dS
S

T is the frictional stress or vector of the frictional force with a normal K

The equation for the law of momentum now yields

SIS[B vdemm s uTv g wva fav

(7)

The conversion of the surface integrals to a volume integral with the

Green's theorem gives

ggf ds = SSS (aT" aT"'+ Tz) av (8)

where -T"x. ?Y’ _1"2 are the frictional stresses acting on the surfaces

perpendicular to the x, y and z axes, respectively.

Now

S‘SS‘pKdS=SVSS‘VpdV . (9)

where the Del operator shows

¢
+

—
k are unit vectors for the x, y, z axes,

e
-

Cte
-




The equation for the law of momentum now is

S‘gS‘[apv 7% PV Vx) o (P"V’*—(PVVZ)JdV gggpl«“dv
SAMIERE 2SI e I

The law of conservation of mass can be written down very easily

(10)

I«;

dm
o -0
with
S
\"2
m P ~
T—gggTd S‘S‘pvndS—O N
\' S A
or

Sgg a dV+§§SV'PVdV=° : (11)

These integral equations can be applied to a fluid mass which is located
between the cross sections a and b. If the element dx is assumed to be
very small, the volume occupied by the fluid mass will be A dx. The
surface enclosing this volume element consists of the two cross sections
Aa and Ap plus the lateral surface K which is equal to the perimeter P

times the element dx, assurming a small element dx.



dx -Dl
b

o

With this restriction the integral can be written

gSvands=-S‘S‘pvvdi+S§p w_;vdi+S‘Sp§;vndS . (12)
Aa Ab K

S

Similar to that, the integral for the frictional force is

Sg?nds=-SS?XdA+SS?di+§S?nds . (13)
S Ay Ap K
The pressure force is also for the x-direction
SS‘pde=(- Sgp dA+S§p dA)?+§Spde , (14)
S Aa Ap K

where i is the unit vector in the x direction. Substituting this into

the equation of momentum yields




dpv > s e
S‘S\S.g—t dV-SS‘pvvdi+§§pvvdi+SS‘pvvndS
Vv A Ay K

a

= S‘vgypde-F(S‘;S'pdA-é:S‘p dA) '*-S;p de-g‘g?x dA

(15)

+ SS Ty dA+S‘§?n ds .
Ay K

Let dx be zero in order to eliminate the volume integral and make the

limit condition

dpv

§I0 % av
\'

m

li =S —aaﬂtl’ dA
Ax—-0 Ax A

The difference between the momentum of entrance and exit can be

written at Ax - 0

A A -
lim 2 b =§%S§pvvdi

A
If the length element goes to zero, the lateral surface K changes to the

perimeter P, so that

K —-
lim gpv v, dP
P



Also

' S{S;SpEdV

1i = P
Ax1 0 Ax SSPFdA
- A

Similar to the resultant momentum the following relation can be obtained

by the limit condition.

A A
lim = b -2 gg pdA
Ax—-0 Ax ox
A
and
§ gg Ty dA + S'S‘H dA

A A -

lim a b = —2- S‘S‘ Tx dA
Ax 0x

The equation of momentum for the x-projection will be (with the Cauchy

formula n dS = cos (n, x) dS

dp v 9 :
SS at" dA+-3—;Sgpvxsz+§pvxvndP:S‘Sp F, dA
A

A P A

SS‘ p cos (n, x) dS (16)

A A Ax -0 Ax
S'Sv Tnx dS
+ lim K A
Ax -0 X




The last two terms must still be evaluated. At first the inertia force

per unit mass in x-direction remains to be determined.

where W is the potential of inertia forces per unit mass.
W= . gx

Substituting into the integral yields

[ rean 5020 o

The term is a part of the partial derivative

S‘S'_P__—-a W Sgp—dA+§§w%E dA
X ' X
A A

So
S‘S‘pF dA = S adeA Sgwg—PdA
X
A A
Since
op _
w0
[foruon- {282 03 o
A

The next step is making the limit condition

(S'p cos (n, x) dS

lim
: A
Ax -0 x

(17)




The total pressure will be set equal to
T=ptpgx=p-pW , (18)
where W is again the potential of inertia forces per unit mass.

So

S.g p cos (n,x) dS = S.‘S‘ m cos (n,x) dS + SS‘ pWcos (n,x)dS . (19)

K K K
m is assumed at a good approximation to be a mean value over

the area, so

S‘g‘ mcos (n,x)dS == SS cos (n,x)dS .

K K

and the integral S‘S‘ cos (n, x) dS is equal to - -g%- dx, neglecting small
K

second-order terms.

As Ax is going to zero, the result is

S‘g w cos (n, x) dS
JA

lim K = W
AX—> 0 AX ax

where m is an average value around the perimeter P. So far the

equation of momentum looks like

10




——i S‘pdA+—-—S‘S\-rxdi+1r%-- lim
0 0 0 A 0 Ax
A A x>y
(20)
S‘S‘Tnx ds
+ lim K x
AX—»O x
To eliminate the term
S‘g p W cos (n, x) dS
lim K A ,
Ax -0 X
a relation which includes this can be derived from
—a-;S\S'S‘deV—gS‘ o dav - p Wn dS
\" A\ K
(21)
:gs‘ __BpW dv - gg p W cos (n, x) dS
ox
\" K
Let: AX—->0
S|S‘ p Wcos (n, x) dS
iSSdeA=SSaPWdA_ lim £ . (22)
ax ox Ax s 0 Ax ‘
A A x=

11



Substitution of this into the equation of momentum results in

op vy
S‘S—ax—- dA+— S.S‘pvx dA+S‘pv vndP——-—-S‘S.deA
A

S.S'rnxds
0 0 oA . K
-ES‘S.pdA'{"é;S'STxdi""IT-a?i‘ lim '—-——-——-—Ax
A

A AX—»O

(23)

Or withwr=p-p W

d
S'S. pa:x -59- g xsz+gpvxvndP—-—SSvM
A A P
(24)
S‘S‘rnxds

+nﬁ+iS‘S‘T dA + lim K
ox ox XX
A Ax—-+0 Ax

The frictional force per unit area of lateral surface is To, 80 at

Ax—+ 0 the term changes to

Sg Tnx dS

m S o S‘To dP
AX—»O AX
P

P is again the wetted perimeter.

For simplification the relation can be applied

a .
_— SS‘ p vy dA = SS Pa:’x dA + S PpVyVn dP (25)
A A

P

which includes two terms of the above equation.

12




Substituting this into the equation of momentum yields

) ) - > dA
s?“f”xd“xﬁw dA"‘EZ“"dA*"E?
A A A

(26)
0
+ -a; TXX dA - TO dp
A P
Since Txy is small in comparison with p, the term can be neglected.
When the integration over the cross section is done, the equation
becomes
0 0 2 a ) oA S’
Et—pVxA+§;pVx A~—--a;'ﬂ'A+‘ﬂ'E"- Todp o (27)
P
Since
0 d 0A
— gA=A—n+mw=2—m |, 8
ox ox " % (28)
the equation of momentum will be
a 2 aTT S‘
e —— A= - - - P
5 pva-kaxpvx Aax To d , (29)
P
or withw =p - pW = p + pgx, integration over the wetted perimeter P
gives the result
PpvyA 3 d
2
—_— A=_- A— + - P . 30
5t Tk P Vx o= (Pt rex) -7 (30)

This is the equation expressing the law of momentum where vy, p and p
are the cross sectional averages of the longitudinal velocity, density

and pressure, respectively.

13



The conservation of mass as indicated earlier is equal to

SS‘S % dv+§§5v-p7dv=o ,

or

SS‘S % dV+§SpvndS=0 . : (31)

Similar to the previous relation the integral can be written in

x-direction

Sgpvnds=-SS‘pvx'dA+§S‘pvdi+S‘gpvndS , (32)
S Ay Ay K

where A,, Ajp and K are the surfaces enclosing the fluid mass.

"Again let dx be zero.

-
s

3% av

lim v =S‘S‘2&dA ,
Ax 0 Ax ot
X~ A
-SSpvdi+SS.pvdi
A A
lim 2 b =2 Sp ve dA
Ax—-0 Ax ax
A
SSpvn ds
lim K Ax Spvn dP
Ax -0

14




P is the wetted perimeter.

The equation of continuity now is

% e

SS‘pv dA+S pvhpbdP =0

The first integral can be replaced by the relation

a— yS‘pdA=§§-gtﬂ dA+§pvndP
A A P

Substituting this into the above equation delivers

—a—i—j‘j‘pdA+
A

5%S‘Spvdi=o ,
A

and after integration over the cross section

This is the equation for the conservation of mass for compressible

and incompressible flow,

op A ;

Op vy A

ot

15

dx

(33)

(34)

(35)

(36)



APPLICATION TO UNSTEADY FLOW PROCESSES

Four different tank configurations will be treated as samples
using the equation for the law of momentum.

1. Flow out of a tank through an orifice on the bottom where
the hydraulic loss is assumed to be zero.

2. Efflux out of a tank through a tube with hydraulic losses.

3. Two tanks connected by a line. Draining of both tanks
fhrough one orifice. Hydraulic losses exist in the interconnect line.

4. Two tanks connected by a line. Draining of both tanks
through a tube. Hydraulic losses exist in the interconnect line and
draining tube.
Case 1 - The efflux takes place out of a tank through an orifice.

The equation of momentum describing the process without

hydraulic losses is

aPVxA a 2 3
_T_+.5.;pva=-A-a;(p+pgx) . (37)

With the substitution of the volume flow rate

Q(t) =vx A ,

and dividing by pA, the equation becomes

d Q, 8 Q@ _ a (p
watm o Bre) (28)
Let
o p _
Hp—o'

that means p, = Py, tanks pressure is equal to the ambient pressure.

16




Integrating with respectto x from x = 0 to x

h h
daQ- X 281 :
at S‘T gQ X-de—gh
0 0
h h
dQS‘dx zS‘l 1
&t J) AT )xdg=en
0 0
or
h 2
dQS‘dx Q* /1 1
— \5-+>=(—-=)=¢gn
R g

i

h yields

(39)

where a is the area of the orifice and A is the area of the tank.

Using the relation for replacing the velocity of the fluid level in the tank

by the change of the height per time

dh
Q = VX A= a—t- A ,
and with the second derivative
2
4 _d (_Ai*l =_ A 3h dA dh
dt dt dt dt? dt dt

the equation becomes

|>

h
(Aﬂ ;‘éEES'E_ _.__)(22
T ger | dt dt A 2 \zz A2/ \at
0

The expression can be rewritten

dA dh _dA dh (dh) _dA (9_9_ ¥
dt dt dt dt (dh)
17

)

= gh . (40)



So, the equation will be
h 2 2 2 2
dh [ a’h 1 dA dh) 1 (A (dh
— | - —— e —— | — = - —_— =
A§ A [ w2 A dh \at ] zZ \72 1) dt gh . (4D

In order to evaluate the second derivative, the operation can be made

( , dh d*h
dt dt?
or
d’h 1 1 a (
4 2 dh :
Substituting into the above equation delivers
h
dh (dh) 1 A(dhz 1 (A‘ )(gz_
ASIA[Zdh %) "aan \a) |tz g - \F§) e 42
0

or in another form

h h
dh d(dhz (dh)z (A‘ ) dA S‘dh (dhz
gh 1 ¢S (&2 ot i J 2588 S (22) = 2gh . (43
AS A [ dh \dt ]+ wx) ;7Y & A \dt gh . (43)
0 0

The differential equation will be after dividing by the integral

h
238 (dn (& -1)
dh A "\;7 -
d (dh\? 0 dhy _ _ 2g
—— ens—— —— - - h . 44
dh(dt ¥ h at h (44)
dh dh
AS';: AS'K
0 0

This linear differential equation can be written in a simple form with

dh
dt) =8,

18




where

and

The solution is

condition is:

At

and

ar %m0 ¥n) (45)

) S‘ Pi) < C +S‘ [\p(h, eS' P dh} dh . (46)

For evaluating the integration constant C, the boundary

O
i
o

O
n
t
>

19



So,

(dhz_C_Qoz
dat/ T 7T TaC

q.l(h) exp (S. cb(h) dh)] dh$ . (47)

Now the assumption is made that the tank consists mainly of a

cylindrical portion with a flat bottom and that means

h
amfe @y
b(n) = — -5 (-
N
0
and
‘P(h)=-—72;'g-—- h=-2g
N
0
The differential equation now appears as
h h

(dt) —exp[§<—-l)dh] S‘dexp[ g(—‘:‘.;-l)%}l]dh . (48)

H

20




The integrals will be
h
A’ dh A® "
exp | -{— -1 — |=exp |-{— ~1)fnh
2 h 2
a a H
H

B
S IS RO

and

h 2 --—--1)
Ingexp[_S(ﬁ--l)dh] dh-ZgS‘(H) dh

_-1) (-—-1) ) 2gH(_§-l) h-(§-1)+l
R |
) (f:zi'l) h-(§-1)+1_H-(-‘§-1)+1
e

2 / 2’ AZ
(-A—-1> (f‘-—-l)+1 (—--1)-
2 2
Zg H a h) a
—_ l - "I:i'
2
=)
a?l
With this calculation the equation becomes

___._1 - -"}j-l A—z-z
(& -G~ ) ) ) ‘-(%)(az )
AT 4 2

al

21



or simplified

(&) 59

(ﬁ 2 B QOZ E) . Zg h ) (h aZ
dt - ,AZ H Az = -ﬁ) . (49)
az

It can be said that att =0

QO:a ng

The differential equation for the liquid level in the tank will then be

(%-9) (% -2)

a a
dh _ 2g H (l‘.) e 280 | (E) : (50)
dt AZ H AZ 5 H
al —a.—z )
Att=0

Q:Alg—}t}- =anN2gH

The above differential equation can be programmed very easily in order
to solve it numerically by a digital computer to find the liquid level in
the tank at any time t.

Case 2 - Efflux out of a tank through a tube with hydraulic losses.

The equation of momentum taking the hydraulic loss into account

is
————-——ap X + ___8 vl A=-A d (p + x) -1, P (51)
ot ax P Vx h ox P TPEXI-=To ’

where 7 is the frictional force per unit area or the skin friction and P

is the wetted perimeter.

22




|

Since

pPVx
where M is the.nondimensional friction coefficient and is a function of
A=\ (Re, ¢) ,
where ¢ is the relative roughness

¢ = 24

=

2 is the mean roughness height and d is the diameter of the tube.
Introducing

Qt) = vy A

the equation of momentum will be

d d : :
pQ ta=p 9—=-A (p+ng)--)3p&P- (52)
Al {

Dividing by the cross sectional area A, and density p, and

integrating from x = 0 to x = e of the tube, results in

€ e e
Q 2 1 p Q_S‘.E_
Tl [ xag=-(Qran)+(Bran), -F ) Hra. 69
0 0 0 -

where the indices 1 and 2 denote the total head at the beginning and the
end of the tube, respectively.
It is assumed that the tank is drained only by gravity, p, = p,.

The integration gives

e
2 2
(_e_ dQ+Q (_l---—l-— =gh-—g—Sf~de , (54)
A/ dt 2 Y 8 0A3
23



where a is the cross sectional area of the tube and A is the cross
sectional area of the tank.

Before solving the integral in the last term, the friction
coefficient A has to be expressed as a function of the Reynolds Number.
Experimental results on turbulent fluid motion in smooth pipes for the
friction coefficient show expressions made by Nikuradse as

2
X =0.00332 + 0.221 Re -0.237

in the range of Re from 10* to 10°% |
Hermann found the formula

X = 0.00540 + 0. 396 Re"o' 3

for Re <1.9 X 10° .
In order to make the solution general, the following expression

has been chosen

n

A=a+f8 Re , (55)

where a, B, (-n) are constants.
With this the integral is

e e

5—1?3 )\dx=S‘—£(a'+BRe'n)dx . (56)

A Al

0 0

The Reynolds Number has the form
v, D v, D
Re = X _ Vx ‘
v v

or with D = 4

ol >

4va 4 Q
T Pv Puv

24




Introduced into the above

n

e e e
P P P 4\
y— =a§—dx+BQ'n§~(—> dx . (57)
A® A3 A? \Pv
0 0 0
The solution of the terms is

e
S'P P
— = o — e ,
Al Al
0

e
Q-nﬁg%(% dx‘QnB—(PV) '
0

With these substitutions the equation of momentum will be

eda Q' (1 1y, Q[ P _nP(4'n_
R TG Flepenen S @) e e

In order to get an equation for Q as a function of time, a

differentiation with respect to time must be applied

e d2Q 1 dQ  aPe ,dQ  BPe 4)'“ 1.ndQ __dh
-A- dt2 * -a—-z. Az) dt 4A3 Q5 dt 8 A3 (PV (2-n) Q F{—ga ’

(59)
Introducing again

dh
Q - - ?“E‘ s
the equation yields
-n :

e d’Q 1 1 aPe BPe(4) l.n |dQ _ g
A ———-—-dtz ) [ AJ Q+ 8A3 -1-)—; (Z-H)Q at -A Q.

(60)

25



Using the relation

°Q _ 4 da 4
dt? dQ dt t
and dividing by %% results in
e d dQ) 1 BPe ( 4\ " 1 Q
—— — — + —_— . — + — - ~n=_§_— .
A dQ (az at) O - Qr 8 A (PV> (2-mQ A a9
dt
(61)

\

In an explicit form

d(dQy_ A g ! (1L _1Y),aPe BPe(4\" -n
dQ(dt “'?Q[Ag_q +(az ‘?)+4A3+8A3 (5—‘,) (2-n) Q ] .

dt (62)

For high relative roughness the friction coefficient X, beginning
from some fixed value of Re, no longer depends on Re. This can be
seen from the experimental results of Nikuradse. In this case the
constant 3 is equal to zero. For solving the above equation a high
relative roughness in the pipe will be assumed. Thus the differential
equation turns to

d /dQ\ _ A g 1 1 1 aPe
-56(-3? --—EQ[:A dQ +(az +AZ)+4A3:| . (63)

A substitution can be made

aQ _
r TR

and for simplification the following expressions will be chosen

M:-g. ,
e
[(_______ A, aP]
e 4A2
26




With this the differential equation becomes

dg_ 1
E—-MQE-*-NQ

Separation of the variables yields

. __£dt
N.M TNE-M

3

QdQ =

In order to know the range of integration the boundary condition has to
be found. Att=0, Q=0, h=H.

Using Equation (54)

€
£ _H
Adt &
or
dQ Ag _
T e T

The integration of the equation now gives

_dQ
TS £
£ dt 1 £ dt
o = 7 H oo N
£ M
Q* 1 N
'z—‘T\TS\ l‘_r\g_e at
to N
_dQ
Q* 1 M M f
Telmermn(§-9) A
£o =2 H

27
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(65)

(66)



Substituting the limit yields

Q> 1 dQ | M M 1 Ag M Ag
T VN w® et ""—)"—‘H' o (y-"Em) . e

Introducing the terms again for M and N the following equation

2 (_1__ _1_)5 a P dt e[l I)A aP:'
A%* a2/ e 4 p2 A? a2/ e 4 p?
In g _d_Q _f‘_&H_ g
e[_l_ _l)é ap] dt e 1 1>A aP
A? at/ e T 4a? I\az "2/ T Tac
(68)
in _.é..g..

e[ -—>—-4AZ] e

is derived. This is a differential equation which can be solved
numerically for Q(t) and h(t) when the relation Q= - A %1- is applied.
Case 3 - Two tanks connected by a line.

Draining of both tanks through one orifice. Hydraulic losses

exist in the interconnect line.

—— P

I T oz |7

- Q, 1 - h;

_I_\ :z;/T—’: ._k\-. Y.I/—L—
Y

28




The flow from tank 1 to tank 2 is described by the equation of

momentum derived previously

e; dQ; le 1 1 le P, -n P 4\ P
A @ T2 (alz' )+ ) l:a’lz—sel‘fBlQ] —A—-(-P—v-> e1]=8(h1-hz).

A? 3
(69)
where the index 1 concerns tank 1 and the interconnect line.
Assuming a high relative roughness in the interconnect line, i.e.,
B = 0 and using the relations
Q=-a
17 - A
and
dQ, d2 h;
dt dt? !
the equation becomes
2
d hl Az 1 1 dh] alplel dhl A
N I Y 3 R
15 32 (alz AZ)( dt) g (b1 - he) (70)

This differential equation represents the flow process out of tank 1
through the interconnect line.

In order to solve it a second equation is needed for the unknown h,.
Thé equation of momentum for tank 2 which only has an orifice as the

draining port is

2 Q

D 1 1
S‘ -—3 --—2— = ghz . (71)
0 B2 A

Qp is the draining flow and is equal to the sum out of both tanks

QD=Q1+Q7_
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Assuming a pure cylindrical tank the integral is

h,

gdh_hz
A A

0

Substituting into the above equation yields

dQ] sz hZ 1 2 1 1
F tw ) ARtz () (;;"',;7)=8h2 :

or with
Q A dh, Q, = dh,
1= - A QoA
da?h d’h 2 ,dh , db (72)
-(---’-+ Z)hz+fﬁ- ! Z)(l -1)=ghz
dt? dt? 2 \dt Al
The two differential equations in an explicit form for the highest
derivative are
a P, dh,
[ (= -=)+ 3 ]( ) -E m-my
z a, A2
and
2 2
d hz Az dhl dhz 1 1 d h]
— =5 ( )( B Tar (73
dt dt A‘ h:  g¢?

These equations can be solved numerically for determination of the
liquid levels in the tanks at any time t.

Case 4 - Two tanks connnected by a line.

Draining of both tanks through a tube. Hydraulic losses exist

in the interconnect line and the draining tube on tank 2.
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€,

A

h,

The equation of momentum for tank 1 again is

dQ
t1 (-_-

Q,z

8

-

P,
a) — e
A

n P,
+ 81 Q) -
A

(&%) o]

Differentiating the equation with respect to time and substituting
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dhl _ Q] dhz _ Qz
& A @& A
gives
e; d?Q, ( 1 1 dQ, aPe, dQ,
T dtZ alz -AZ) ! dt 4A3 1 dt
B1 P, e, ( ) 1-n dQ, - __
5 A B,y (2-n) Q, T (Q; - Q)
The flow process out of tank 2 is described by the following
equation
e; dQ Qp? Qp [a: P e - 4 \vnP,e
e D+D 1___1_+D 2 Z+BZQDn( 2 €
A dt A2 8 Al P,v Al

=g(h, -h;).

(74)

(75)

L]

Joun

(76)



The draining flow is
QD = Ql + Qz

Substitution results in

e; (dQ, dQ, 1 R 1) . 22 Pze;
= "'a?'*'T) 35 (Q1+ Q) (;7-::2' +(Q1 + Q) AT
8 (77
_ 2Pz e; 4 \-n
Q)+ Q) (Q) + Q)" () =em -
ga* \Pzv
Differentiating with respect to time yields
ez (d?*Q; , d’Q, ( ( Q, sz)
_— + —_— =
AN\ g )+ ) 210+ Q)
a; Py e dQ 78)
8 A
Bz Pz €2 4 -Nn l-n dQl sz gdhz i
= (55) @ @) (G +—) = --£q,.
So, the two differential equations are in an explicit form for the highest
derivatives.
2
d"Q, A1 1 a1 P
—-:'g‘(Qz-Qx)-[ (—--——) Q, + = Qi
dt? e €1 \a,%2 A? 4 A
BiP1 , 4 \" 1-n] 4
* 8AZ (pr) (Z-H)Q] ]Tt- !
and
d? Q; A 1 1 a
=-£—Qz-[—(—--——z—) (Q, + Q) + — (Qi+ Q)
dt? e €2 ‘a2 A
(79)
2
3zpz l-n dQ, dQ; d"Q,
: (5 V) (2-n) Qi+ QNP | (- + =) - 57
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+

A numerical solution is the only method for solving the equation for
obtaining the flow, Q, and the liquid level, h, in the tanks as a function

of time.
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RESULTS

An analysis of unsteady flow out of tanks was made and the
derived equations were applied to four samples with one- and two-tank
configurations. The results are still differential equations for the flow
rate or the liquid level in the tank which must be solved nﬁmerically by

i

a digital computer. The tank shape is assumed to be pure cylindrical

with flat tops and flat bottoms.
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CONCLUSIONS

When the pressure force is much larger in comparison to the
force due to gravity the quasi-steady flow equations will hold true and
the unsteady flow terms can be neglected (References 1, 2 and 3). But
when only gravity is acting on the liquid, the unsteady flow equations
must be applied. The derived differential equations for unsteady flow of

a viscous or inviscous fluid out of tanks through a draining tube by which

- the tanks can be emptied simultaneously are also valid for any other

tank system.
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